fr1endship.2bb.ru

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » fr1endship.2bb.ru » Обо всем » Наука


Наука

Сообщений 1 страница 11 из 11

1

Здесь я предлагаю обсуждать всякие научные достижения и изобретения.
Ну те, которые, так или иначе, вас поразили:)

А начнем мы с 10 "лучших случайных открытий человечества"
 
1. Виагра
Как известно, виагра изначально разрабатывалась как средство от ангины. Мужчины всего мира должны быть благодарны жителям уэльского города Мертир Тайдфил. Именно здесь в 1992 году в ходе испытаний обнаружился замечательный побочный эффект преппарата

2. LSD
Швейцарский ученый Альберт Хофманн в 1943 году стал первым человеком, попробовавшим "кислоту". Он заметил на себе эффект диэтиламида лизергиновой кислоты, когда проводил медицинские исследования данного вещества и его влияния на процесс родов.

3. Рентген
В XIX веке многих ученых интересовали лучи, появляющиеся в результате ударов электронов по металлической мишени. Однако открыл рентгеновское излучение германский ученый Вильгельм Рентген в 1895 году. Он подвергал различные объекты воздействию данного излучения и, меняя их, случайно увидел, как на стене появилась проекция костей его собственной руки.

4. Пенициллин
Шотландский ученый Александр Флеминг в 1928 году занимался исследованием гриппа. Однажды он заметил, как сине-зеленая плесень (природный пенициллин выделяют плесневые грибы), размножавшаяся в одной из чашек Петри, убила всех находящихся там стафилококков.

5. Искусственные подсластители
Три самых распространенных заменителя сахара были открыты лишь благодаря тому, что ученые забыли помыть руки. Цикламат (1937) и аспартам (1965) явились побочным продуктом медицинских исследований, а сахарин (1879) был случайно обнаружен при исследованиях дериватов каменноугольного дегтя.

6. Микроволновые печи
Микроволновые излучатели (магнетроны) работали на радарах союзников во время Второй мировой войны. Новые возможности применения обнаружились в 1946 году, когда магнетрон расплавил шоколадку в кармане Перси Спенсера, одного из инженеров американской компании Raytheon.

7. Бренди
В средние века торговцы вином часто выпаривали воду из перевозимого напитка, чтобы оно не портилось и занимало меньше места. Вскоре кое-кто находчивый решил обойтись без фазы восстановления. Так родился бренди.

8. Вулканизированная резина
Невулканизированная резина очень неустойчива к внешним воздействиям и плохо пахнет. Чарлз Гудйер, в честь которого была названа компания Goodyear, открыл процесс вулканизации, когда случайно поставил смесь каучука и серы на горячую плиту.

9. Картофельные чипсы
Повар Джордж Крам изобрел популярную закуску в 1853 году. Когда один из его клиентов пожаловался, что его картошка нарезана слишком толстыми ломтикам, он взял картошку, порезал ее кусочками толщиной почти с лист бумаги и поджарил. Таким образом появились чипсы.

10. Булочки с изюмом
Здесь же стоит упомянуть и о легенде, описанной знатоком Москвы журналистом и писателем Владимиром Гиляровским, о том, что булочку с изюмом изобрел знаменитый булочник Иван Филиппов. Генерал-губернатор Арсений Закревский, купивший как-то свежую сайку, вдруг обнаружил в ней таракана. Вызванный на ковер Филиппов, схватил насекомое и съел, заявив, что генерал ошибся - это была изюминка. Вернувшись в пекарню, Филиппов распорядился срочно начать печь булочки с изюмом, чтобы оправдаться перед губернатором.

0

2

Icanseeyourhousefromhere написал(а):

2. LSD
Швейцарский ученый Альберт Хофманн в 1943 году стал первым человеком, попробовавшим "кислоту". Он заметил на себе эффект диэтиламида лизергиновой кислоты, когда проводил медицинские исследования данного вещества и его влияния на процесс родов.

О, это дааа... Он, кстати, жив еще...

0

3

Icanseeyourhousefromhere написал(а):

2. LSD
Швейцарский ученый Альберт Хофманн в 1943 году стал первым человеком, попробовавшим "кислоту". Он заметил на себе эффект диэтиламида лизергиновой кислоты, когда проводил медицинские исследования данного вещества и его влияния на процесс родов.

О, это дааа... Он, кстати, жив еще...

11. Калькулятор
Изобрел Френк Болдуин... родился в 1838... Когда изобрел калькулятор точно не знаю...

12. С++
Брьен Струаструп... Во, цуко, умный!

0

4

Компьютер будет управлять мозгом

Ученые университета Флориды разрабатывают компьютерный микрочип, который способен помогать больными такими недугами, как паралич и эпилепсия. Для этого чип необходимо имплантировать в головной мозг.

Микрочип "подключается" к нейронам головного мозга, и по мысленной команде он будет подавать сигналы к органам и конечностям человека. Устройство сможет урегулировать "работу" нейронов, к примеру, в случае эпилептического припадка. Кроме этого, микрочип позволит человеку управлять механической рукой силой мысли.

На сегодняшний день технологии опробованы только на крысах, но уже через четыре года появится и "человеческий" вариант. Микрочип появится в продаже, когда сигналы мозга будут расшифровываться максимально точно.

0

5

Израильский ученый доказал возможность путешествия во времени

Мировая наука имеет все необходимые теоретические знания для того, чтобы с полным правом утверждать — путешествие во времени возможно. Об этом заявил известный израильский ученый, профессор Израильского технологического института Амос Ори.

http://news.mail.ru/society/1399371/

0

6

В 10-м классе средней школы на уроках физики уже давно учат, что путешествие во времени возможно, но только в одну сторону - вперёд.

0

7

хочу в чёрную дыру...что там?оО

0

8

Хочу кубик из антиматерии. :(

0

9

Когда NASA впервые заслало американских астронавтов в космос, очень быстро выяснилось, что шариковые ручки в условиях отсутствия гравитации просто не пишут.
Чтобы разрешить эту неожиданно возникшую проблему, ученые NASA потратили десяток лет, 12 миллиардов долларов и наконец создали ручку, которая могла писать в невесомости, под водой и вообще практически на любой поверьности, включая стекло, и из любого положения, даже вверх тормашками, в диапазоне температут от абсолютного нуля до +300 градусов Цельсия .......
А Русские писали карандашами.

0

10

10 самых красивых за всю историю физических экспериментов

Десятки и сотни тысяч физических экспериментов было поставлено за тысячелетнюю историю науки. Непросто отобрать несколько "самых-самых"», чтобы рассказать о них. Каков должен быть критерий отбора?

Четыре года назад в газете "The New York Times" была опубликована статья Роберта Криза и Стони Бука. В ней рассказывалось о результатах опроса, проведенного среди физиков. Каждый опрошенный должен был назвать десять самых красивых за всю историю физических экспериментов. На наш взгляд, критерий красоты ничем не уступает другим критериям. Поэтому мы расскажем об экспериментах, вошедших в первую десятку по результатам опроса Криза и Бука.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами.

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем. — следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея
Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам.

Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=?(mM/r2), оставалось определить значение гравитационной постоянной ?- Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой отказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы — коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой — экран. На экране Ньютон наблюдал "радугу": белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей — от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, "примешиваемой" к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный — при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что "никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета". Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц — корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон ("кольца Ньютона"), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона
Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена
Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин "электрон", обозначавший некую частицу — носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта "положительно-отрицательная" система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в "рыхлом" атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома — массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. В третьих... Но давайте подождем следующего номера. Современные физические эксперименты — тема следующей (и последней) статьи цикла.

0

11

Одной из самых значительных проблем современности является проблема загрязнения окружающей среды. Каждый день человечество выбрасывает в атмосферу огромное количество углекислого газа.

Каждая машина, работающая на двигателе внутреннего сгорания, вредит нашей планете и делает экологическую ситуацию еще хуже. К сожалению это не все. Энергетическая проблема стоит не менее остро, ведь запасы нефти не бесконечны, цены на бензин все растут, и нет причин для их уменьшения. В поисках альтернативных источников топливо было изобретено множество проектов, но все они либо слишком дорогостоящи, либо малоэффективны. Хотя один из них выглядит весьма обещающим. Судя по нему, возможно, новым топливом будущего станет… воздух!

Звучит фантастично, не правда ли? Разве это возможно, чтобы автомобиль ездил на воздухе? Конечно, это возможно. Но это воздух не в таком виде, в котором мы им дышим сейчас - чтобы двигать автомобиль, нужен сжатый воздух. Сжатый, и находящийся под высоким давлением, воздух двигает поршни двигателя, и автомобиль движется! После того как он отработал в двигателе, воздух возвращается в атмосферу абсолютно чистым. Бака достаточно на 200 километров пути, и скорость тоже весьма впечатляет - до 110 километров в час!

Этот автомобиль не только полностью экологичен, он также существенно сэкономит деньги своему владельцу! Одна полная заправка сжатым воздухом обойдется в полтора евро, и за считанные минуты автомобиль будет снова готов к путешествиям. Полтора евро практически равны по цене двум литрам бензина. Посчитайте, сколько проедет ваша машина на двух литрах - наверняка цифра будет куда меньше чем 200 километров. Ведь после небольших и несложных подсчетов, ежедневная заправка автомобиля сжатым воздухом обойдется как минимум в 10 раз дешевле!

Изобретатель этого интересного концепта, бывший инженер Формулы 1, работал над своим проектом более десяти лет. Он надеется, что эта идея не пройдет незамеченной. И он не ошибался, так как несколько Индийских компаний заинтересовались этим проектом, и уже к концу этого года собираются выпустить первые модели автомобилей на сжатом воздухе. Стоить они будут, ориентировочно, от 3500 евро, что весьма доступно. Продавать их планируют в Европе и Индии, но если проект обретет популярность, возможно и по всему миру. Будем надеяться, что это не последний шаг для развития экологически чистых способов передвижения.

Источник: digiz.ru

0


Вы здесь » fr1endship.2bb.ru » Обо всем » Наука